Суббота, 2024-05-11
Файлы для студентов
Меню сайта
Главная » 2014 » Июль » 25 » Скачать Разработка и применение расчетно-теоретических методов анализа запроектных аварий реактора РБМК. Афремов, Дмитрий Александрович бесплатно
3:38 AM
Скачать Разработка и применение расчетно-теоретических методов анализа запроектных аварий реактора РБМК. Афремов, Дмитрий Александрович бесплатно
Разработка и применение расчетно-теоретических методов анализа запроектных аварий реактора РБМК

Диссертация

Автор: Афремов, Дмитрий Александрович

Название: Разработка и применение расчетно-теоретических методов анализа запроектных аварий реактора РБМК

Справка: Афремов, Дмитрий Александрович. Разработка и применение расчетно-теоретических методов анализа запроектных аварий реактора РБМК : диссертация кандидата технических наук : 01.04.14 Москва, 2003 203 c. : 61 04-5/1192

Объем: 203 стр.

Информация: Москва, 2003


Содержание:

ГЛАВА 1 ПРИМЕНЕНИЕ КОДА MELCOR 183 К МОДЕЛИРОВАНИЮ ТЯЖЕЛЫХ ЗАПРОЕКТНЫХ АВАРИЙ РЕАКТОРА РБМК
11 Краткое описание реакторной установки
12 Краткое описание кода MELCOR
13 Моделирование топливного канала реактора РБМК при помощи кода MELCOR
131 Выбор компонент для моделирования топливного канала реактора РБМК
132 Модель тепловыделяющего элемента
133 Угловые коэффициенты излучения для элементов топливного канала
14 Теплофизические свойства конструкционных материалов и веществ, образующихся в процессе аварии
141 Теплофизические свойства UO
142 Теплофизические свойства циркониевых сплавов
143 Теплофизические свойства Zr
144 Теплофизические свойства стали 12Х18Н10Т
145 Теплофизические свойства графита
15 Физико-химические взаимодействия в процессе аварии
151 Окисление циркониевых сплавов за счет взаимодействия с паром
152 Окисление стали за счет взаимодействия с паром
153 Взаимодействие UO2 с твердым циркалоем
154 Растворение UO2 и Zr02 расплавленным цирконием
155 Химическое взаимодействие циркониевых сплавов со сталью и инконелем (образование эвтектик)
16 Выбор параметров в модели топливного канала реактора РБМК
161 Выбор свойств материалов
162 Выбор параметров, определяющих процессы деградации элементов активной зоны
17 Демонстрационная задача Начальные условия для моделирования
18 Результаты расчета для демонстрационной задачи
19 Выводы к главе
ГЛАВА 2 МОДЕЛЬ ДИСПЕРГИРОВАНИЯ КАПЛИ РАСПЛАВЛЕННОГО КОРИУМА ПРИ ЕЕ ДВИЖЕНИИ ЧЕРЕЗ ТЕПЛОНОСИТЕЛЬ ПО МЕХАНИЗМУ РАЗРУШЕНИЯ ПРИСТЕННОГО СЛОЯ ПРИМЕНИТЕЛЬНО К ПРОБЛЕМЕ ПАРОВОГО ВЗРЫВА
21 Постановка задачи и вывод формулы для распределения образующихся капель по размерам
22 Сравнение результатов расчета с экспериментами по динамическому разрушению тепловыделяющих элементов в условиях аварии реактивностного типа
221 Описание экспериментов по динамическому разрушению твэлов
222 Обсуждение механизма разрушения твэла и фрагментации топлива
223 Аппроксимация измеренного экспериментально распределения фрагментов топлива по размерам при помощи теоретического распределения
224 Использование разработанного метода для описания результатов независимого эксперимента
23 Сравнение результатов расчетов с экспериментами по взаимодействию топлива с теплоносителем в условиях аварии с плавлением активной зоны реактора
231 Описание экспериментов по взаимодействию расплавленного топлива с теплоносителем
232 Аппроксимация измеренного экспериментально распределения фрагментов топлива по размерам при помощи теоретического распределения для случая слива расплава в воду
24 Выводы к главе
ГЛАВА 3 ИССЛЕДОВАНИЕ УСЛОВИЙ РАСХОЛАЖИВАНИЯ АКТИВНОЙ ЗОНЫ ЭНЕРГОБЛОКОВ ПЕРВОГО ПОКОЛЕНИЯ С РЕАКТОРАМИ РБМК ПРИ ДЛИТЕЛЬНОМ ОБЕСТОЧИВАНИИ СОБСТВЕННЫХ НУЖД
31 Постановка задачи
311 Цели исследования
312 Критерии приемлемости
313 Исходное состояние реакторной установки и сценарий аврии
32 Модель реактора
33 Отклик реакторной установки на исходное событие и действия персонала при сохранении высокого давления в КМПЦ
331 Развитие событий при базовом сценарии аварии
332 Исследование возможности охлаждения активной зоны при сохранении высокого давления в контуре
34 Охлаждение активной зоны за счет подачи воды от низконапорных источников
341 Исследование процесса снижения давления в КМПЦ при открытии ГПК
342 Определение минимального расхода воды от низконапорных источников, достаточного для охлаждения активной зоны
35 Выводы к главе
ВЫВОДЫ :

Введение:

Актуальность работы обусловлена необходимостью совершенствования расчетно-теоретических методов анализа аварий ядерных реакторов и проведением углубленного анализа безопасности ядерных энергетических установок. Согласно "Рекомендациям по углубленной оценке безопасности действующих энергоблоков атомных станций с реакторами типа ВВЭР и РБМК" [1] такая оценка должна содержать анализ запроектных аварий, то есть аварий, вызванных не учитываемыми для проектных аварий исходными событиями или сопровождающихся дополнительными по сравнению с проектными авариями отказами систем безопасности сверх единичного отказа, реализацией ошибочных решений персонала, которые могут привести к тяжелым повреждениям или к расплавлению активной зоны, уменьшение последствий которых достигается управлением аварией и/или реализацией планов мероприятий по защите персонала и населения [2]1.
Выполнение углубленного анализа безопасности и разработка мер по управлению запроектными авариями проводится с использованием специализированных расчетных компьютерных программ (кодов). Разработка расчетных средств применительно к отечественным реакторам ведется по двум направлениям: разработка собственных расчетных кодов и накопление опыта по применению западных кодов.
Современные расчетные коды представляют собой сложные расчетные комплексы, содержащие большое число взаимосвязанных моделей отдельных физических и физико-химических явлений и процессов. Перед включением в код, каждая из таких моделей отдельно проходит стадии разработки и верификации.
1 Следует отметить, что наряду с термином "запроектная авария", для аварий с плавлением активной зоны применяется термин "тяжелая авария".
Запроектные аварии, сопровождающиеся расплавлением отдельных фрагментов или всей активной зоны в целом, то есть ситуации, когда действия по управлению аварией оказались безуспешными или не предпринимались, являются крайне маловероятными событиями. Однако тяжесть их последствий заставляет анализировать такие аварии.
Для расчетно-теоретического анализа тяжелых аварий используются специализированные коды. В настоящее время существует целый ряд "тяжелоаварийных" кодов предназначенных для моделирования аварий реакторов корпусного типа: S CD AP/REL АР 5, MELCOR, ATHLET CD, ICARE/CATHARE, СВЕЧА. В то же время, эти коды не аттестованы в Госатомнадзоре России для анализа тяжелых аварий канальных реакторов типа РБМК. Таким образом, адаптация одного или нескольких из перечисленных кодов для реактора РБМК может быть эффективным способом получения средств анализа запроектных аварий данного типа реакторов.
Адаптация кодов должна происходить в два этапа. На первом этапе должен быть выполнен тщательный анализ структуры адаптируемого кода, перечня и глубины используемых моделей, состава исходной информации для расчета и т.д. После этого может быть сделан вывод о принципиальной применимости данной программы. Окончательно вопрос о применимости решается на основе проведения дополнительной верификации. Следует отметить, что преимущество использования неизмененной ("замороженной") версии кода состоит в том, что сохраняется актуальность всего объема верификационных исследований, выполняемых авторами кода для его аттестации. На втором этапе могут быть разработаны, верифицированы и внедрены специализированные модели для реактора РБМК.
Исходные данные для расчета по теплогидравлическим кодам включают в себя информацию о теплофизических свойствах широкого круга веществ, о константах скоростей химических реакций и т.п. Поэтому, сбор и сопоставление такой информации по литературным данным является необходимым этапом создания расчетной модели.
Одним из возможных процессов при тяжелой аварии является взрывное взаимодействие расплавленных компонентов активной зоны ядерного реактора с теплоносителем. Интенсивность этого процесса (амплитуда импульса давления) в свою очередь определяется степенью диспергирования расплава, что делает весьма актуальной задачей создание моделей диспергирования при различных механизмах взаимодействия расплав-теплоноситель.
Под управлением запроектной аварией [2] понимаются действия, направленные на предотвращение развития проектных аварий в запроектные и на ослабление последствий запроектных аварий. Для этих действий используются любые имеющиеся в работоспособном состоянии технические средства, предназначенные для нормальной эксплуатации, обеспечения безопасности при проектных авариях или специально предназначенные для уменьшения последствий запроектных аварий. Таким образом, расширение перечня оборудования, используемого для управления аварией, включение в него нестандартных элементов с целью повышения "живучести" установки, а также разработка алгоритмов его использования являются практически важными задачами.
Цель работы состоит в повышении качества расчетно-теоретического анализа запроектных аварий ректоров, прежде всего РБМК, и в развитии методов и алгоритмов управления запроектными авариями реакторов РБМК для ослабления их последствий. Частные цели исследования состоят в том, чтобы:
1. Выполнить анализ структуры кода MELCOR и физических моделей используемых в нем, с целью определения адекватности описания с их помощью процессов, протекающих в РБМК при гипотетических тяжелых авариях. Разработать модель топливного канала реактора РБМК. Собрать и сопоставить литературные данные о теплофизических свойствах конструкционных материалов элементов активной зоны реактора РБМК (в том числе при высоких температурах) и соединений, образующихся в ходе аварии, о константах скоростей химических реакций и т.п. На основе проведенного литературного обзора выбрать исходную информацию для модели. Выполнить демонстрационные расчеты для подтверждения работоспособности модели.
Разработать физическую модель взаимодействия расплав-теплоноситель и на ее основе получить соотношение для расчета распределения фрагментов по характерным размерам при диспергировании капли расплавленного кориума в процессе ее движении через теплоноситель. Это позволит определить площадь поверхности горячих фрагментов расплава, являющуюся одним из замыкающих соотношений при расчете интенсивности теплообмена и в конечном итоге - амплитуды давления при паровом взрыве.
Для аварии с длительным обесточиванием энергоблока первого поколения с реактором РБМК на примере 2-го блока ЛАЭС определить момент начала разогрева активной зоны и оценить времена достижения таких температур оболочек твэлов, канальных труб и оболочек стержней СУЗ при которых возможно повреждение твэлов и разрушение элементов контура реактора, то есть времена достижения так называемых критериев приемлемости. Исследовать возможность охлаждения активной зоны штатной насосной подсистемой САОР при восстановлении электроснабжения в условиях сохранения высокого давления в контуре циркуляции. В том случае, когда не происходит восстановления электроснабжения блока, выбрать оптимальный алгоритм снижения давления в контуре путем воздействия на ГПК со стороны оператора для оптимизации момента подачи воды от низконапорных источников (пожарных машин) и определить минимальный расход воды, необходимый для охлаждения активной зоны.
Метод исследования представляет собой расчетно-теоретическое моделирование физических процессов.
Для моделирования процесса расплавления активной зоны реактора РБМК использован код MELCOR, разработанный в Национальной лаборатории Sandia, США. На этот выбор повлиял следующий ряд факторов: код MELCOR позволяет моделировать установки с произвольными схемными решениями; коэффициенты корреляций, константы химических реакций, критерии наступления событий и т. д. могут изменяться пользователем; имеется возможность коррекции свойств материалов; код MELCOR является относительно быстро считающим.
Функция распределения размеров фрагментов капли расплава получена аналитическим методом и в конечном виде представляет собой формулу для распределения частиц по размерам.
Для исследования длительного обесточивания собственных нужд энергоблока с реактором РБМК использован расчетный код RELAP5/MOD3.2, так как в настоящее время эта программа является основным инструментом анализа проектных и запроектных (до стадии плавления активной зоны) аварий ядерных реакторов. С участием автора выполнен значительный объем дополнительной верификации данной программы.
Научная новизна работы заключается в том, что:
• На основании разработанной физической модели взаимодействия расплав-теплоноситель получена функция распределения для характерных размеров (диаметров) фрагментов капли расплавленного кориума, образующихся при ее движении через теплоноситель, позволяющая определять площадь межфазного взаимодействия при паровом взрыве.
• На основе тщательного анализа физических моделей кода MELCOR впервые разработана модель топливного канала реактора РБМК для исследования гипотетических тяжелых аварий.
Систематизированы и сопоставлены литературные данные о теплофизических свойствах конструкционных материалов активной зоны реактора РБМК, в том числе при высоких температурах, о свойствах веществ образующихся в ходе тяжелой аварии и о константах скоростей окисления и растворения.
Практическая значимость работы заключается в том, что: Модель диспергирования капли расплавленного кориума внедрена в код VAPEX (ЭНИЦ ВНИИАЭС), предназначенный для анализа процессов взаимодействия расплава с теплоносителем и использующейся в практических расчетах в обоснование безопасности существующих и проектируемых реакторных установок.
Для аварии с длительным обесточиванием 2-го энергоблока Ленинградской АЭС определен момент начала разогрева активной зоны и оценены времена достижения таких температур оболочек твэлов, канальных труб и оболочек стержней СУЗ, при которых возможно повреждение твэлов и разрушение элементов контура реактора. Это позволяет оценить время, которым располагает персонал для управления аварией.
Для аварии с длительным обесточиванием показана возможность охлаждения активной зоны реактора РБМК-1000 штатной насосной подсистемой САОР при восстановлении электроснабжения в условиях сохранения высокого давления в контуре циркуляции. Расчетным путем определен оптимальный алгоритм снижения давления в контуре реактора РБМК-1000 путем воздействия на ГПК со стороны оператора в условиях аварии с длительным обесточиванием для оптимизации момента подачи воды от низконапорных источников (пожарных машин).
• Рассчитан минимальный расход воды от пожарных машин, необходимый для охлаждения активной зоны реактора РБМК-1000 при аварии с длительным обесточиванием.
• База данных по теплофизическим свойствам материалов, собранная автором, может быть использована при моделировании тяжелых аварий различных типов реакторов, при планировании дополнительных исследований свойств материалов, при анализе неопределенностей результатов расчетов и т. д.
Достоверность и обоснованность научных положений диссертации определяется использованием фундаментальных физических и математических моделей для решения поставленных задач, использованием верифицированных и валидированных расчетных программ, использованием широкой информационной базы по теплофизическим свойствам конструкционных материалов активной зоны реактора РБМК, сравнением результатов расчетов с экспериментальными данными
Личный вклад автора состоит в следующем:
1. Собраны и сопоставлены литературные данные о теплофизических свойствах конструкционных материалов элементов активной зоны реактора РБМК (в том числе при высоких температурах) и соединений, образующихся в ходе аварии, а также о константах скоростей окисления и растворения.
2. Выполнен анализ структуры кода MELCOR 1.8.3 и физических моделей, используемых в нем, с целью определения адекватности описания с их помощью процессов, протекающих в РБМК при гипотетических тяжелых авариях, и разработана модель топливного канала реактора РБМК.
3. Выведена формула для расчета функции распределения фрагментов по характерным размерам при диспергировании капли расплавленного кориума в процессе ее движении через теплоноситель.
•174. Выполнена аппроксимация измеренных экспериментально распределений фрагментов топлива по размерам при помощи теоретического распределения.
5. Выполнены все расчеты, результаты которых излагаются в диссертации.
6. Проведен анализ результатов математического моделирования исследуемых режимов.
Публикации: основные результаты диссертационной работы изложены в 5 статьях, опубликованных в журналах "Теплофизика высоких температур", "Теплоэнергетика" и "Атомная энергия", 4 докладах, опубликованных в материалах конференций, 4 статьях, опубликованных в годовых отчетах НИКИЭТ, 1 статье, опубликованной в годовом отчете МНТЦ, 7 научных отчетах.
Апробация работы: результаты работы были доложены на конференции "Студенческая осень-94", Москва, 1994 г., юбилейной ХХХ-ой Зимней школе ПИЯФ им Б.П. Константинова, Санкт-Петербург, 1996 г., отраслевой конференции "Теплогидравлические коды для энергетических реакторов (разработка и верификация)", Обнинск, 29-31 мая 2001 г, международном семинаре "Супервычисления и математическое моделирование", Саров, 17-21 июня 2002 г., российско-германском семинаре "ATHLET-KOPCAP", Москва, 20 ноября 2002 г., результаты работы многократно докладывались на заседаниях секции теплофизики Научно-технического совета НИКИЭТ.
Результаты, включенные в диссертацию, частично получены в ходе выполнения ряда международных проектов:
• Проект №3 Международного научно-технического центра (МНТЦ) "Теоретические и численные модели тяжелых аварий ядерных ректоров, вызванных неконтролируемым введением положительной реактивности, и вычисление параметров источника радиоактивного загрязнения".
• Международный проект (НИКИЭТ-PNNL) "Вероятностный и детерминистический анализ безопасности 2-го блока Ленинградской АЭС".
Проект №6 Международного центра по ядерной безопасности (МЦЯБ) Минатома России "Улучшение и верификация программного и аппаратного обеспечения для моделирования, анализа экспериментов и оценки безопасности. Валидация кодов для анализа переходных процессов в реакторах ВВЭР и РБМК".
Диссертация содержит: введение, 3 главы, выводы, заключение и список из 156 использованных литературных источников, выполнена на 203 листах, включая 20 таблиц и 67 рисунков.

Скачивание файла!Для скачивания файла вам нужно ввести
E-Mail: 4142
Пароль: 4142
Скачать файл.
Просмотров: 128 | Добавил: Анна44 | Рейтинг: 0.0/0
Форма входа
Поиск
Календарь
«  Июль 2014  »
ПнВтСрЧтПтСбВс
 123456
78910111213
14151617181920
21222324252627
28293031
Архив записей
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Copyright MyCorp © 2024
    Конструктор сайтов - uCoz